3.834 \(\int \frac{(a+b x)^2}{x^3 \sqrt{c x^2}} \, dx\)

Optimal. Leaf size=26 \[ -\frac{(a+b x)^3}{3 a x^2 \sqrt{c x^2}} \]

[Out]

-(a + b*x)^3/(3*a*x^2*Sqrt[c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0036094, antiderivative size = 26, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1, Rules used = {15, 37} \[ -\frac{(a+b x)^3}{3 a x^2 \sqrt{c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^2/(x^3*Sqrt[c*x^2]),x]

[Out]

-(a + b*x)^3/(3*a*x^2*Sqrt[c*x^2])

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rubi steps

\begin{align*} \int \frac{(a+b x)^2}{x^3 \sqrt{c x^2}} \, dx &=\frac{x \int \frac{(a+b x)^2}{x^4} \, dx}{\sqrt{c x^2}}\\ &=-\frac{(a+b x)^3}{3 a x^2 \sqrt{c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0096495, size = 33, normalized size = 1.27 \[ \frac{c \left (-a^2-3 a b x-3 b^2 x^2\right )}{3 \left (c x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^2/(x^3*Sqrt[c*x^2]),x]

[Out]

(c*(-a^2 - 3*a*b*x - 3*b^2*x^2))/(3*(c*x^2)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 30, normalized size = 1.2 \begin{align*} -{\frac{3\,{b}^{2}{x}^{2}+3\,abx+{a}^{2}}{3\,{x}^{2}}{\frac{1}{\sqrt{c{x}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^2/x^3/(c*x^2)^(1/2),x)

[Out]

-1/3*(3*b^2*x^2+3*a*b*x+a^2)/x^2/(c*x^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.07142, size = 45, normalized size = 1.73 \begin{align*} -\frac{b^{2}}{\sqrt{c} x} - \frac{a b}{\sqrt{c} x^{2}} - \frac{a^{2}}{3 \, \sqrt{c} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2/x^3/(c*x^2)^(1/2),x, algorithm="maxima")

[Out]

-b^2/(sqrt(c)*x) - a*b/(sqrt(c)*x^2) - 1/3*a^2/(sqrt(c)*x^3)

________________________________________________________________________________________

Fricas [A]  time = 1.49316, size = 73, normalized size = 2.81 \begin{align*} -\frac{{\left (3 \, b^{2} x^{2} + 3 \, a b x + a^{2}\right )} \sqrt{c x^{2}}}{3 \, c x^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2/x^3/(c*x^2)^(1/2),x, algorithm="fricas")

[Out]

-1/3*(3*b^2*x^2 + 3*a*b*x + a^2)*sqrt(c*x^2)/(c*x^4)

________________________________________________________________________________________

Sympy [B]  time = 0.608357, size = 53, normalized size = 2.04 \begin{align*} - \frac{a^{2}}{3 \sqrt{c} x^{2} \sqrt{x^{2}}} - \frac{a b}{\sqrt{c} x \sqrt{x^{2}}} - \frac{b^{2}}{\sqrt{c} \sqrt{x^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**2/x**3/(c*x**2)**(1/2),x)

[Out]

-a**2/(3*sqrt(c)*x**2*sqrt(x**2)) - a*b/(sqrt(c)*x*sqrt(x**2)) - b**2/(sqrt(c)*sqrt(x**2))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x + a\right )}^{2}}{\sqrt{c x^{2}} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2/x^3/(c*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x + a)^2/(sqrt(c*x^2)*x^3), x)